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1. INTRODUCTION

We will consider the least-squares restricted range approximation problem

minimize f w(f- h)2 subject to v(t) ~ h(t) ~ u(t) for all t in A I'
heH A2

Here f, w, v, and u are given functions and H is a family of approximating
functions; precise hypotheses will be specified in the next section. Restricted
range approximation includes as special cases positive approximation (where
h(t) ~ 0 is required) and one-sided appro~imation (where for approximation
from below, say, h(t) ~J(t) is required). G. D. Taylor and others have
studied uniform approximation with restricted range, where
maxx If(x) - h(x)1 is minimized, subject to the same constraints as above,
and have developed a complete theory, cf. [13].

Least-squares approximation by positive polynomials has been considered
in [1] and [10]. In [9] a problem of digital filter design has been formulated
as a problem of least-squares approximation with restricted range.

Our main result in this paper is a characterization theorem for least­
squares approximation with restricted range. We also obtain several
corollaries and state the generalization of the characterization theorem to the
problem of L 2P approximation with restricted range, where 2p is an even
integer. In a subsequent paper we will discuss computational algorithms and
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numerical examples for least-squares approximation with restricted range.
We have found that the conditions specified to characterize a best approx­
imation can be conveniently verified in the examples we have considered.

Gehner [4, 5] has used an optimization theory approach to obtain a
general characterization theorem [5, Theorem 4, p. 54]). This theorem was
used in [5] to obtain characterization results for constrained Chebyshev and
L 1 approximation. This approach could also be employed to obtain charac­
terization results for constrained L p approximation, 1 <P < 00.

After completing this paper we learned of the work of Evans and Cantoni
[3], which contains, among other results, two characterization theorems for
the least-squares restricted range problem.

2. THE CHARACTERIZATION THEOREM

In this section we list our hypotheses, note the existence of a unique
solution to the least-squares restricted range problem, and then prove a
characterization theorem giving necessary and sufficient conditions for an
approximation to be the best (least squares) approximation with restricted
range. First the hypotheses:

HI: A 1 is a closed and bounded set of real numbers and A z is a finite
union of closed, bounded intervals of real numbers.

Hz : f is a real continuous function on Al U A Z.

H 3 : v and u are real continuous functions on A I with v(t) < u(t) for all t

in AI'

H 4 : {h 1''''' hn} is a set of real continuous functions on A 1 U A z which is
linearly independent on A z; denote by H the set of all linear combinations
(with real coefficients) of h1"'" hn •

H s : w is a real, continuous strictly positive (weight) function on A z.

H 6 : The exists a linear combination h = L:7= 1 a;h; such that
v(t) ~ h(t) ~ u(t) for all t in A I'

H 7 : For k = 1,..., n the set {hI'"'' hk } is a Chebyshev system of order k
on A I ; that is, if t1"'" tk are distinct points in A l' then det(hitJ) *o.

For a subset B <;: A I' the least-squares restricted range problem will be
denoted by R B and is:

minimize f w(f- h)Z subject to v(t) ~ h(t) ~ u(t) for all t in B.
heH A,
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Of course h* in H is a solution of R B if v(t) ~ h*(t) ~ u(t) for all tin B
and if

J w(f- h*)2 ~ J w(f - h)2
A, A,

for every h in H

which satisfies v(t) ~ h(t) ~ u(t) for all t in B.
When B = 0, the problem reduces to the familiar unconstrained least­

squares problem.
Since the following existence and uniqueness result can be established

using standard arguments, its proof will be omitted; cf. [11].

THEOREM 1. If H 1-H6 are satisfied and B s; AI' then the least-squares
restricted range problem R B has a unique solution.

We now proceed to develop the characterization theorem. The basic idea
is this: known results on convex programming give a characterization
theorem when A 1 has a finite number of points; then a discretization result
yields the characterization for more general AI'

We will use II· 11m to denote anyone of the equivalent norms on real
Euclidean m-space R m.

LEMMA 1. If {x1'"'' x k } is a linearly independent set of k vectors, each in
R n

, then there exists e >0 and M> 0 such that ifYl ,..., Yk are elements of
Rn satisfying

i= 1,... , k,

then

is bounded above by M.

Proof By contradiction. Suppose that there exists a sequence of positive
real numbers {e i } which converges to zero, a sequence of subsets of R n,

j= 1,2,... ,

and a sequence {aU)} in R k such that

(a) Ilxi - YY) lin < ej , i = 1,..., k,

(b) II aU) Ilk -> 00 as j -> 00 and

I ",k U) U)II .(c) lL..i=1 ai Yi n ~ 1 for J = 1,2,....

Let f.i U) = aU) /11 aU) Ilk'
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Select a subsequence of {,uUl I, call it {,uup) I, which converges to a norm­
one limit ,II E R k

• By (b) and (c),

must converge to zero and also, by (a), to L:7=I,u;x;. Hence L:7=t,u;xi

equals the zero vector of R n, a contradiction of the linear independence of
{XI'"'' xd. This establishes Lemma 1.

LEMMA 2. (Discretization). If H]-H6 are satisfied and if {Eil is a
sequence of finite subsets of A] such that max1EA minTEB It - rl ..... 0 as
j ..... ex), then {h U) I converges uniformly to h* on A I LJA 2' where hU) is the
solution of R B

j
and h* is the solution ofR A I •

Proof Since h* satisfies v(t)::;;; h*(t)::;;; u(t) for all tin B j , and hU) is the
solution of R B , we have

1

f w(f - hUl )2::;;; f w(f - h*?
A 2 A 2

for allj. (2.1 )

Since all norms are equivalent on the finite dimensional space H, then
Ul I.' U) '" n Ul{maxI(;(nla; :J= 1,2,·.. 1 IS bounded, where h =L..;=lai hi' Hence

{hull is uniformly bounded on Al UA 2 • Let {hUk)1 be a subsequence which
is uniformly convergent on A I U A2' say to fi. It is easily seen that
v(t) ::;;; fi(t) ::;;; u(t) for all t in A I' Also,

from (2.1). Hence the uniqueness of the solution of R A implies that fi = h *.
. I

Since {hUll is bounded and every convergent subsequence has h* as limit,
the entire sequence {h U)I converges to h*.

We now state some definitions and results on convex programming from
Rockafellar [12].

Given a nonempty subset S of R n
, the convex cone generated by S is the

set of all linear combinations of the form L:f=1 aisp where p > 0, ai >0 and
s i in S for i = 1,..., p.

LEMMA 3. Let {S;: i En be a collection of nonempty convex sets in R n

and let K be the convex cone generated by U;EJ S;. Then every vector of K
can be expressed as a linear combination with nonnegative coefficients of n
or fewer linearly independent vectors, each belonging to a different S;.

Proof [12, p. 156].

640(36(4-3
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Recall that C is a convex subset of R n if x, y in C and 0 < 0 < 1 imply
Ox + (1 - O)y in C. A real function h is convex on a convex set C ~ R n if x,
y in C and 0 <0 < 1 imply h(Ox + (1 - O)y) ~ Oh(x) + (1- 0) hey). If h
differs from a linear function by a constant, it is affine.

An (ordinary) convex program (P) is a problem:

minimize fo(x)
xeC

. subject to /;(x) ~ 0,

/;(x) = 0,

i = 1,..., r

i=r+ 1,...,m, (P)

where C is a nonempty convex subset of R n, 0 ~ r ~ m, fl ,...,j,. are convex
functions on C and /,.+ I , ... ,fm are affine functions on C.

We say x in Cis afeasible solution for (P) if x satisfies the m constraints
of (P). The optimal value in (P) is inf(fo(x): x is a feasible solution for (P)}.
Of course, a feasible solution y is a solution of (P) if fo(Y) equals this info
The vector A = (AI'"'' Am) is a Kuhn-Tucker vector for (P) if Ai ~ 0 for
i = 1,... , r and if the infimum of fo +Atfl + ... +Amfm over C is finite and
equal to the optimal value in (P). The Lagrangian for (P) is the function
L(A, x) =.fo(x) + AIJ;(X) + .. , + Amfm(x) defined for x in C and for Ai ~ 0,
i = 1,..., r. We say (X, x) is a saddle point for L if L(A, x) ~ L(X, x) ~ L(X, x)
for all (A, x) and (X, x) in the domain of L.

LEMMA 4. Let (P) be an ordinary convex program with ft ,... ,fm affine
and C = R n. If the optimal value in (P) is not -fJ.) and if (P) has a feasible
solution, then a Kuhn-Tucker vector exists for (P).

Proof [12, p. 279J.
In the next lemma the gradient vector is Vh = (fJh/fJx l , ..., fJh/fJxn ).

LEMMA 5. Let (P) be an ordinary convex program for which each /; is
differentiable. Let Xand x be vectors in R m and R n

, respectively. In order
that Xbe a Kuhn-Tucker vector for (P) and x be an optimal solution of (P),
it is necessary and sufficient that (X, x) be a saddle point for the Lagrangian
of (P). Moreover this condition holds if and only if x and the components
AI'"'' Am ofXsatisfy:

(a) Ai ~ 0, /;(x) ~ 0, and Ai/;(X) = 0 for i = 1,..., r,

(b) hex) = 0 for i = r + 1, , m,

(c) V(fo(x) + AI.t;(X) + + Amfm(x))lx=x= O.

Proof [12, pp. 280, 281 J.
We now prove our main result.
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THEOREM 2. (Characterization). Let A" A 2 ,f, V, u, h"..., hn and w satisfy
H I-H7' Then h* E H is the solution ofR A I if and only if

(a) v(t)~h*(t)~u(t)forall tEAl and

(b) there exists a non-negative integer k, with k ~ n, distinct points
tI'"'' tk E A I and real constants a I"'" ak such that if I ~ i ~ k

(i) either h*(ti) = u(ti) or h*(ti) = v(ti),

(ii) sign ofai = +1 ifh*(ti) = u(tJ

= -I ifh*(tJ = V(ti)'

(iii) for j = I,..., n,

kf w(t)(f(t) - h*(t» hit) dt = I aihitJ (2.2)
A 2 i=1

where the summation is interpreted as zero for k = O.
Furthermore, (b) is satisfied with k = 0 if and only if h* is the best

unconstrained least-squares approximation to f on A 2'

Proof The last statement is immediate, since for k = 0, (2.2) reduces to

f w(f - h *) hj = 0,
• A 2

j= I,..., n,

which are the normal equations for unconstrained least-squares approx­
imation and are well known to be necessary and sufficient for h* to be a best
approximation.

We now show that h* in H is the solution of R A I -¢:> h* satisfies (a) and
(b).

(=?) Case 1. Al has a finite number of points. Let AI = {t" ..., tm }. Then
RAJ can be expressed equivalently as the convex programming problem

minimize Q(a) = f w (f - ±ajhj ) 2 subject to
a A 2 j= I

n

ci(a) = V(tJ - I ajhiti) ~ 0 and
j=1

n

ci(a) =I ajhiti) - u(tJ ~ 0, for i = I,..., m.
j=1

We now apply Lemmas 4 and 5, which assure us that there exists a
Kuhn-Tucker vector, (AI'"'' A;;;, Ai ,..., A~), of non-negative real numbers
for RA and that necessary and sufficient conditions for

I
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n

h* = .L a/ hj to be a solution of RAt are
j=1

(2.3)

Now ).1 :f=. 0 only if cf(a*) = 0; hence, by H 3 , Ai At = 0 for i = 1,... , m.
Let

0i= -0.5Ai
= 0.5At

=0

Equation (2.3) can be written as

irAi :f=. 0

if Ai+:f=. 0

if Ai- = 0 and At = o.

l-aa. Q(a) JI = -l-aB (£ Ai ci-(a) +At ct(a)) JI '
a; a=a' a; 1=1 a=a'

for j = 1,..., n. Or

. m

- 2J w(t)(f(t) - h*(t)) hit) dt = .L (A i- hiti) - At hj(ti)),
A 2 i= I

for j = 1,... , n. Or, finally,

. m

J w(t)(f(t) - h*(t)) hit) dt = .L 0ihiti)'
A 2 i= I

for j = 1,..., n. Hence, if we pick out just the o/s that are non-zero and
renumber them and their associated I/s, we have established that h* satisfies
conditions (a) and (b).

We now prove k <n. Consider the convex cone generated by
{{vil: i = 1,..., k}, where

for i = 1,..., k.

By Lemma 3,

x == (5 w(t)(f(t) - h*(t)) hl(t) dt, ...,f w(t)(f(t) - h*(t)) hn(t) dt)
A 2 A 2
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can be generated by a positive combination of no more than n of the v/s.
Hence, even if we started with more than n of the v/s, all but at most n of
these could be deleted. This concludes the proof of ( => ) for a finite A I •

Case 2. A I has an infinite number of points. Since A I is bounded by HI'
we can select a sequence of finite sets {Bp} such that

(1)

(2)

BP <;; A I for all p,

maxlEA minsEB It - Sl4 0 as p 400.
I P

We apply Lemma 2 and see that the sequence of solutions of {R B }, {h(P)},
must converge to h*, the solution of R A • Note that h* must satisfy (a) by

I

definition; we will now show that it satisfies (b).
We will be selecting a number of subsequences. At each stage, we will use

the subscript Pr for each of these to avoid cumbersome notation. For each
P, h(P) satisfies (b) and k = kp is less than or equal to n. Select a subsequence
of {R B } for which each kp is equal to a common value, call it k. If k = 0,
then 1:

2
w(J - h*) hj = limr ~oo f w(J - h(Pr») hj = 0 for j = 1,..., nand h*

satisfies (b). When k ~ 1 we index the tlPr) (from condition (b) for R B ) so
ili~ ~

Select a subsequence for which {tIPr)} converges for each i = 1,..., k. This is
possible by HI' Some of these subsequences may coalesce. Let tr ,..., t: be
the limit points of the k sequences, with tr < ... < t: and 1 :::;:; q :::;:; k:::;:; n.

Define the vectors
yjPr) = (hI (tjPrl ),... , hn(tjPr»)) for j = 1,..., k,

and

for i = 1,..., q.

Let

L; = UI yjPr) 4 Xi as r4 oo}.

Condition (b)(ii) on the signs of the aIPr)'s implies that if j1'j2 ELi' then
sign a~Pr) = sign a~Pr) for all but a finite number of r's. Now

11 h

)' a~Prl y~Pr) = c~Pr) z!Prl,
...... J J I I

jEL;

where

and
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:::;; L II y?,l - xill n -t 0
jeL j

Note that XI'"'' Xq are linearly independent by H 7 •

The sequence of vectors, for r = 1,2,...,

as r-t 00.

is convergent; hence, bounded. We now apply Lemma 1 to conclude that the
sequence of vectors

must be bounded. Select a subsequence of {R B } for which {c(P ,)} is
P,

convergent to c* E Rq.
Let t~ ,..., n:, be the tts for which c7 -=1= O. We now have q' points in Al

and q' real numbers for which h* satisfies condition (b). This concludes the
proof that the solution of R A must satisfy (a) and (b).

I

( <= ) If h* satisfies (a) and (b), let B = {t" ..., tk} as in condition (b). By
using Lemma 5 and reversing the analysis in Case 1 above, h* must be the
solution of RB • If h in H satisfies v(t):::;; h(t) :::;; u(t) for all t in AI' then h
satisfies the constraints of R B and

J w(f- h*)2 :::;; J w(f - h)2.
A 2 A 2

Since v(t):::;; h*(t):::;; u(t) for all t in Al by condition (a), h* is the solution of
R A I' This completes the proof of Theorem 2.

We note that if A I is a finite set, then the hypothesis H 7 is not needed for
Theorem 2.

The characterization theorem can be used to check whether an approx­
imation h* which satisfies v :::;; h * :::;; u on A I is the solution of R A as follows:

I

Find k:::;; n points t" , tk , where h* = u or h* = v and solve the linear
equations (2.2) for 0" , Ok (it can be shown that a unique solution exists). If
the signs of the resulting o/s are as prescribed in condition (b)(ii) of
Theorem 2 then h* is the solution of R A •

I

We now present several corollaries which follow immediately from the
characterization theorem.
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In Corollary 1 we use the notation, for B S; AI'

£2(B) = J w(f - hB )2,
A 2

where hB is the solution of the least-squares restricted range problem RB •

313

COROLLARY 1. If H I-H7 are satisfied and h* is the solution of the least­
squares restricted range problem R A , then there exists a subset T* of A I

I

with at most n elements and such that the solution ofR r , is h*. Furthermore

£2(A I) = £2(T*) = max £2(T),
rET

where r is the collection of all subsets of A 1 with at most n elements.

Proof. Let T* = {t p ... , td from Theorem 2, condition (b) for the
problem R A . Then h* is the solution of R T' by Theorem 2 applied to R T' .

I

This also shows £2(A I) = £2(T*). Now if T S; A), then any h in H which
satisfies the constraints of RAt must satisfy the constraints of R r .

Hence £2(A) ~ £2(T).

COROLLARY 2. if H I-H7 are satisfied and h* is the solution of the least­
squares restricted range problem R A , then there exist a nonnegative integer

t

k ~ n, a subset T = {t p ... , td ofA 1 with t1 < ... < tk and signs cp..., ck' each
in {-I, I}, such that h* is the solution of the least-squares problem with
interpolatory constraints:

minimize J' w(f - h)2
hEH A 2

subject to h(tJ = u(t j ) if Cj = +1

= v(t j ) if Cj = -1, i = 1,..., k.

(2.4)

Proof. Let T = {t1"'" td and a1"'" ak be as in Theorem 2 for the
problem RAt; we may assume t 1 < ... < lk' For i = 1,..., k set c j = sign of a j •

Since

h*(t j ) = u(t j )

= v(tJ

if ci = +1

if Cj =-1

then h * satisfies the constraints of problem (2.4). By the proof of Corollary
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1, h* is the solution of R T • If h in H satisfies the constraints of problem
(2.4). then h satisfies the constraints of RT and so

Hence h* is the solution of problem (2.4).
Theorem 2 gives a characterization condition for least-squares positive

approximation and for least-squares one-sided approximation.

COROLLARY 3. if HI' H 2 • H 4 , H 5 and H 7 are satisfied. then h* in His
the solution of the least-squares positive approximation problem:

minimize f w(f - h)2 subject to h(t) ~ 0 for all t in Al
heH A,

if and only if
(a) h*(t) ~ ofor all t in AI'

(b) there exist a nonnegative integer k. with k ~ n. distinct points
t) ,...• tk in A), and real constants °1 , .... Ok such that

(i) h*(tj)=O. i= I....,k.

(ii) OJ <0, i= 1,.... k,

(iii) L, w(f- h*) hj = 2:7=) Oihj(tj),j = 1,.... n.

where the summation is interpreted as zero for k = O.

Proof Let vet) == 0, u(t) == c > O. If c is chosen large enough, the upper
constraint is inactive and the corollary follows from Theorem 2.

COROLLARY 4. if HI' H 2 , H 4 • H 5 and H 7 are satisfied and if there
exists h in H with h(t) ~f(t) for all t in A), then h * in H is the solution of
the problem of least-squares one-sided approximation (from below):

minimize f w(f - h)2 subject to h(t) ~f(t) for all t in A)
heH A,

if and only if

(a) h*(t)~f(t)forall t in AI'

(b) there exist a nonnegative integer k, with k ~ n, distinct
points t) ,.... tk in A), and real constants °1 .... , Ok such that

(i) h*(tJ=f(ti).i= 1..... k

(ii) OJ> 0, i = 1..... k

(iii) L, w(f- h *) hj = 'L..7= 1 0ih/ti),j = I,..., n

where the summation is interpreted as zero for k = O.
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Proof Let u(t) = f(t), vet) == C < O. If IC I is chosen large enough, the
lower constraint is inactive and the corollary follows from Theorem 2.

Of course, the analogs of Corollaries 1 and 2 hold for positive approx­
imation and for one-sided approximation.

We remark that the above analysis extends with very little change to give
a characterization theorem for L 2P (2p an even integer) approximation with
restricted range:

minimize r w(f - h)2P subject to vet) ~ h(t) ~ u(t) for all t in AI'
hEH • A,

Existence and uniqueness of a solution again follows using standard
arguments. The characterization result is this:

THEOREM 3. (Characterization). If H 1-H 7 are satisfied and if 2p is an
even positive integer, then h* in H is the solution of the L 2P approximation
problem with restricted range if and only if

(a) vet) ~ h*(t) ~ u(t) for all t in A I'

(b) there exist a nonnegative integer k, with k ~ n, distinct points

t I'"'' tk in A I' and real constants a I'"'' ak such that if I ~ i ~ k

(i) either h*(tJ = u(tJ or h *(t;) = v(ti ) for i = I,... , k,

(ii) sign ofa; = +1 if h*(t;) = u(tJ

= -1 if h*(tJ = v(tJ,

(iii) for j = 1,..., n

• k

J w(f-h*)2P- l hj = I a;hitJ,
A, i=1

where the summation is interpreted as zero for k = O. Furthermore (b) is
satisfied with k = 0 if and only if h* in H is the best unconstrained L 2P
approximation to f on A 2 •

Of course, the analogs of Corollaries 1-4 hold for L 2P approximation.
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